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Motion Coordination with Noisy Measurement in
Natural and Artifical Swarms
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Abstract— We consider the problem of controlling a group of
mobile agents toward a formation defined by the desired relative
positions between the agents. Each agent has available for control
noisy measurements of its relative position with respect to a small
set of neighbors. The motion of the group as a whole is due to
a leader who moves independently of the other agents. We show
that there are intrinsic limitations on the size of the group group
determined by the underlying network structure imposed by the
requirement of local interaction, which determine how low a
tracking error can be achieved.

It is shown that the tracking error covariance is given by
the matrix-valued effective resistance introduced by the authors
in Barooah and Hespanha (2005). We show how the effective
resistance of a node in the multi-agent graph scales with the
distance of that node from the leader for a large class of
graphs. These scaling laws ultimately dictate on what kind of
graphs scalable motion coordination can be achieved. Apart from
providing design guidelines for robotic swarms, these results shed
light on the dynamics of collective motion of certain animal
groups.

I. INTRODUCTION

Distributed control algorithms for motion coordination of
multi-agent autonomous systems have attracted considerable
attention in recent times due to the promise of autonomous
agents to perform a wide range of tasks that make them at-
tractive to both military and civilian applications (Schoenwald,
2000). Usually an agent can interact with only a small subset
of other agents. The constraints on the interactions between
nodes define a graph whose nodes/vertices are the agents and
the edges connect interacting agents. Many biological systems
(e.g., bird flocks and fish schools) can also be viewed as multi-
agent systems and their performance is limited by the same
constraints that artificial multi-agent systems have to face due
to limited and unreliable communication.

We consider the problem of controlling a group of mobile
agents towards a formation defined by the desired relative
positions between the agents. Each agent has available for
control noisy measurements of its relative position with respect
to a small set of neighbors. Noise in the measurements
is inevitable in practice, and its affect on formation is a
focus of our work. The group moves as a whole due to the
motion of a leader, who moves independently of other agents.
This problem is relevant for motion coordination of mobile
autonomous agents where the common goal of the group may
require that the agents form a specific formation. It is also
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relevant in the study of natural swarming behavior of animals;
in particular, how specific formations are maintained using
only local information. Although swarming in nature has been
studied extensively (see (Okubo, 1986) and references therein),
the effect of formation structure and size in the presence of
noise has not been fully understood.

Observation of biological multi-agent systems suggests that
there may be intrinsic limitations on the size of the group
determined by the underlying network structure, which in
turn is determined by the requirement of local interaction
between agents. For example, the V-formations used by flocks
of geese (supposedly to reduce drag or improve lift) have
far fewer individuals than the 3-dimensional formations that
schools of herrings use. In this paper we show how the
structure of the network imposes fundamental limitations on
what objective the network of agents can collectively achieve
when constrained to local interaction and noisy measurements.

To reveal these intrinsic limitations, we consider a dis-
tributed control law based on local noisy relative position
measurements. The control law captures, in a simplified way,
features present in the the more sophisticated models of animal
swarming (Okubo, 1986). We examine the tracking error of
individual agents depend on the size and structure of the
network formed by the agents. We show that the tracking
error covariance of an agent is equal to the matrix-valued
effective resistance (Barooah and Hespanha, 2005) between
the agent and the leader. We establish several properties of
effective resistance. In particular, (i) we show that the effective
resistances are monotone with respect to an appropriately
defined graph embedding relation, and (ii) we determine
laws that characterize how effective resistances scale with
the distance between nodes. The scaling laws depends on
the “denseness” and “sparseness” properties of the graph,
and different graphs may exhibit very different scaling laws.
Some graphs exhibit high rates of growth of the effective
resistance, whereas in certain graphs effective resistance is
bounded irrespective of how large the graph is. As a result,
there are formation structures where it is possible to have low
tracking error even with a large number of agents whereas in
others it is fundamentally impossible to do so. These results
can be used to explain some of the observed differences in the
swarming behavior of different groups of animals, and also as
guidelines in the design of robotic formations that allow for
accurate tracking.
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II. GRAPH EFFECTIVE RESISTANCES

In this section we formally define the concept of matrix-
valued effective resistance introduced by the authors in (Ba-
rooah and Hespanha, 2005) and refined in (Barooah and Hes-
panha, 2006b). An undirected matrix-weighted graph is a triple
G = (V,E,W), where V is a set of n vertices; E ⊂ V×V a
set of m edges; and W := {Wu,v ∈ R

k×k : (u, v) ∈ E} a set
of symmetric positive definite matrix-valued weights for the
edges of G. Since we are dealing with undirected graphs, the
pairs (u, v) and (v, u) denote the same edge. For simplicity of
notation, we exclude the existence of multiple edges between
the same pair of nodes and also edges from a node to itself.

The matrix-weighted Laplacian of G is a nk×nk matrix L
with k rows per vertex and k columns per edge such that the
k× k block of L corresponding to the k rows associated with
node u ∈ V and the k columns associated with node v ∈ V

is equal to














∑

v∈Nu

Wu,v u = v

−Wu,v (u, v) ∈ E

0 (u, v) /∈ E.

where Nu ⊂ V denotes the set of neighbors of u, i.e., the set
of nodes that have an edge in common with u.

The matrix-weighted Dirichlet or Grounded Laplacian is
obtained from the Laplacian by removing particular rows and
columns. In particular, given a subset Vo ⊂ V consisting of
no < n nodes, the matrix-weighted Dirichlet Laplacian for the
boundary Vo is a (n− no)k × (n− no)k matrix Lo obtained
from the matrix-weighted Laplacian of G by removing all
rows and columns of Lo corresponding to the nodes in Vo.

The usual graph Laplacian is a special case of the matrix-
weighted Laplacian when k = 1 and all the weights are equal
to one. The submatrix Lo of L in the special case of k = 1 is
called the Dirichlet Laplacian, since it arises in the numerical
solution of PDE’s with Dirichlet boundary conditions (Chung,
1997). It is also called a Grounded Laplacian since it arises in
the solution of node potentials in a electrical network (Ayazi-
far, 2002).

We say that a graph G is connected to Vo if there is a path
from every node in the graph to at least one of the boundary
nodes in Vo. Lemma 1 at the end of this section shows that
the Dirichlet Laplacian Lo is invertible when G is connected
to Vo.

We now formally define effective resistance in a connected
graph G: node u’s effective resistance to Vo, denoted by
Reff

u (Vo), is the k × k block in the main diagonal of L−1
o

corresponding to the k rows/columns associated with the node
u ∈ V. This terminology is justified by the fact that these
matrices also express a map from (matrix-valued) currents to
(matrix-valued) voltages in an appropriately defined electrical
network. To make this connection precise, consider an abstract
generalized electrical network where currents, potential drops
and edge-resistances are k × k matrices. For such networks,
Kirchoff’s current law can be defined in the usual way, except
that currents are added as matrices. Kirchoff’s voltage law can

also be defined in the usual way where potentials drops across
edges are added as matrices. Kirchoff’s voltage laws show the
existence of a matrix valued node potential function. Ohm’s
law takes the form Ve = Reie, where ie is a generalized k×k
matrix current flowing through the edge e of the electrical
network, Re is the generalized resistance of that edge, and Ve

is a generalized k×k matrix potential drop across the edge e.
Generalized resistances are always symmetric positive definite
matrices.

The generalized electrical networks so defined share many
of the properties of “regular” electrical networks. In particular,
Kirchoff’s and Ohm’s laws uniquely define all edge currents
and node voltages in a generalize electrical network when
the potential at a particular reference node is fixed at some
arbitrary value (“grounded”). The potential difference between
pairs of nodes are the same irrespective of what the potential of
the reference node is. This allow us to define the generalized
effective resistance Reff

u,v between two nodes u and v as the
potential difference between them when a generalized current
equal to the k × k identity matrix is injected into one and
extracted at the other.

The following result in (Barooah and Hespanha, 2005)
justifies the terminology of graph effective resistances in
section II by showing that it is the same as the generalized
effective resistance defined above.

Theorem 1: Consider an undirected matrix-weighted graph
G = (V,E,W) and construct a generalized electric network
with k×k edge-resistors Re, e ∈ E that are numerically equal
to the inverses of the corresponding edge-weights, i.e., Re =
W−1

e , e ∈ E. For every single-node boundary Vo := {o} and
every node u ∈ V \ Vo, node u’s effective resistance to Vo

is equal to the generalized effective resistance between u and
o. �

It should be noted that this effective resistance is matrix-
valued. The previous definitions relied on the non-singularity
of Lo, which is established by the following lemma (Barooah
and Hespanha, 2006a).

Lemma 1 (Invertibility): The matrices Lo and L are both
positive semi-definite. Moreover, the matrix Lo is positive
definite if and only if G is connected to Vo. �

We will shorty see that effective resistances play a key
role in scalable motion coordination. Moreover, effective resis-
tances also allow us to deduce properties of the spectrum of the
matrix-weighted Dirichlet Laplacian and even of the spectrum
of the original matrix-weighted Laplacian. The convergence of
several continuous-time distributed algorithms is determined
by the spectrum of the matrix

Go := −γD−1
o Lo, γ > 0.

where Do is a block diagonal matrix that contains the k ×
k blocks on the diagonal of the matrix-weighted Dirichlet
Laplacian Lo, and γ is a positive constant. The following
lemma that was proved in (Barooah and Hespanha, 2006a)
will be useful in later analysis.

Lemma 2 ((Barooah and Hespanha, 2006a)): Assume that
G is connected to Vo. Every eigenvalue of Go is real and
satisfies

λi(Go) ≤ −
γ

λmax(Do)
∑

u∈V
traceReff

u (Vo)
, (1)
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where λmax(Do) denotes the largest eigenvalue of Do. �

III. FORMATION CONTROL WITH NOISY MEASUREMENTS

Consider a group of n mobile agents moving in k-
dimensional space that one desires to control to a given
formation defined by their relative positions. In particular,
denoting by xu ∈ R

k, u ∈ V := {1, 2, . . . , n} the position of
the uth agent, the control objective is to make the positions
converge to values for which

xu − xv = ru,v , ∀(u, v) ∈ V ×V, (2)

where ru,v denotes the desired relative position of agent u with
respect to agent v. One of the agents o ∈ V will be called
the leader and it will move independently of the remaining
ones. The remaining agents attempt to maintain the formation
specified by (2). The leader may actually not be a physical
agent. Instead, it may be a “reference” that is known to at
least one of the physical agents.

Not all agents are able to measure their relative positions
with respect to all other agents and therefore each agent is
constrained to use only a few relative position measurements
to compute its control signal. We denote by E ⊂ V×V the set
of pairs of agents that can measure their relative positions. In
particular, the existence of a pair (u, v) in E signifies that agent
u can measure its position with respect to v and similarly,
v can measure its position with respect to u, although both
measurements will be corrupted with noise. Since the noise
corrupting the measurement of xu−xv available to u will be in
general different from the noise on the measurement of xv−xu

available to v, we need to distinguish these two measurements.
To this end, we introduce a directed edge set ~E containing
the two ordered pairs (u, v), (v, u) whenever (u, v) ∈ E. We
assume that a noisy measurement yu,v of the following form
is available to agent u if (u, v) ∈ ~E:

yu,v = xu − xv + εu,v (3)

where εu,v is a white random noise process with autocorrela-
tion matrix given by E[εu,v(t1)ε

T
u,v(t2)] = δ(t1 − t2)Ru,v.

Note that by assumption, if a measurement yu,v is available
to u, then the measurement yv,u is available to v. The noise
processes over different edges are assumed independent of
each other. In particular, eu,v(t) is independent of ev,u(t) for
all t. In case xo is a reference and not a physical agent, an
edge between the node u and the leader o means that the
physical agent u is able to measure its position with respect
to the reference o.

The problem above is now associated with a matrix-
weighted directed graph ~G = (V, ~E, ~W) with node set
V = {1, 2, . . . , n}; directed edge set ~E consisting of all
ordered pairs of nodes (u, v) for which a noisy measurement
of the form (3) is available; and weight set ~W consisting of
the inverses of the autocorrelation matrices Wu,v := R−1

u,v,
(u, v) ∈ ~E. We assume that even though the measurement
errors on the two edges (u, v) and (v, u) connecting the nodes
u and v are independent, they have the same autocorrelation
matrix; i.e., Ru,v = Rv,u. We will refer to this assumption,
together with the assumption that the directed edge (u, v)
exists iff (v, u) exists, as bidirectionality. Fig. 1 shows an

example of a bidirectional directed graph and its associated
undirected graph.

We are interested in control laws for which each agent
uses all its measurements to construct an optimal estimate of
the difference between its currently position and what this
“should” be, in view of what it know about its neighbors
positions. The measurements available to an arbitrary agent
u ∈ V are

yu,v = xu − xv + εu,v , ∀v ∈ Nu,

where Nu ⊂ V denotes set of nodes v such that (u, v) ∈ ~E. If
agent u assumes that all its neighbors are correctly positioned
then, according to (2), the desired position of u is given by
any one of the following equations

xd
u = xv + ru,v , ∀v ∈ Nu.

Combining the two previous sets of equations, we obtain

yu,v = xu − xd
u + ru,v + εu,v, ∀v ∈ Nu,

from which agents u estimates its position error xu −xd
u. It is

straightforward to show that the Best Linear Unbiased estimate
of xu − xd

u is given by

D−1
u

∑

v∈Nu

R−1
u,v

(

yu,v − ru,v

)

,

where Du :=
∑

v∈Nu

R−1
u,v. This motivates the following

negative proportional control law for the agents

ẋu = −γD−1
u

∑

v∈Nu

R−1
u,v(yu,v − ru,v), ∀u ∈ V \ {o}, (4)

where γ denotes some positive number. For analysis purposes
it is convenient to describe the system dynamics in term of
positions with respect to the leader. Defining x̃u = xu − xo,
one concludes that

˙̃xu = −γD−1
u

∑

v∈Nu

R−1
u,v(x̃u − x̃v − ru,v + εu,v) − ẋo,

∀u ∈ V \ {o}.

By stacking all the positions x̃u, u ∈ V \ {o} in a column
vector x̃, the above systems can be written as follows:

˙̃x = −γD−1
o Lox̃ + γD−1

o BoW (r − ε) − ẋo1, (5)

where r is a column vector obtained by stacking all the ru,v

on top of each other; ε is a column vector obtained by stacking
all the εu,v; 1 is a n−1×1 column vector of all 1’s; W > 0 is
a block-diagonal matrix with k rows/columns for each edge in
~E, with the weights Wu,v := R−1

u,v, (u, v) ∈ ~E in the diagonal;
Do > 0 is a block-diagonal matrix with k rows/columns for
each node in V \ Vo, with Du, u ∈ V \ Vo as defined
earlier in the diagonal; Lo = 1

2AoWAT
o where Ao is the

generalized incidence matrix for the directed graph (V, ~E)
with Vo = {o} (cf. section II); and Bo is a matrix with k
rows for each vertex in V \Vo and k columns for each edge
in ~E, constructed as follows: the k columns corresponding
to edge (u, v) ∈ ~E are all equal to zero except for the
block corresponding to the node u, which is equal to Ik.
The white noise process ε has block diagonal autocorrelation
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~G G

A0 =

h
−1 0 I I I 0 −I 0 −I 0
0 −I 0−I 0 I I I 0 −I 0
0 0 0 0 −I 0 0 −I I I

i

Bo =

h
I I I 0 0 0 0 0
0 0 0 I I I 0 0
0 0 0 0 0 0 I I

i

L =

2

6
6
6
6
4

2I −2I 0 0

−2I
0

0

4I −I −I
−I 2I −I
−I −I 2I
| {z }

Lo

3

7
7
7
7
5

, Do =

"
4I 0 0

0 2I 0

0 0 2I

#

Fig. 1. A bidirectional directed graph ~G and the associated undirected graph
G. The matrices Ao and Bo shown are for the graph ~G.

matrix given by E[ε(t1)ε
T (t2)] = δ(t1−t2)W

−1. Fig. 1 shows
an example of the matrices defined above.

Lo is exactly the matrix-weighted Dirichlet Laplacian for
the matrix-weighted undirected graph (V,E,W) with bound-
ary Vo := {o} with the weight Wu,v on every undirected edge
(u, v) assigned as the weight on the corresponding directed
edge (u, v) ∈ ~E. Note that we get the undirected Laplacian in
the system dynamic equations (5) due to the bidirectionality
assumption.

From Lemma 2, we conclude that (5) is an asymptotically
stable system and Lemma 2 actually relates the speed of its
slowest pole with the effective resistances. It turns out that the
effective resistances play an even more interesting role for this
system. To see this, we further re-write the model (5) as

˙̃x = −γD−1
o Lox̃ + w + b,

where b := γD−1
o BoWr − ẋo1 and w := −γD−1

o BoWε is a
white noise random process with autocorrelation matrix given
by

E[w(t1)w
T (t2)] = γ2D−1

o BoW E[ε(t1)ε
T (t2)]WBT

o D−1
o

= γ2δ(t1 − t2)D
−1
o BoWBT

o D−1
o = γ2δ(t1 − t2)D

−1
o ,

where we used the fact that BoWBT
o = Do. Since the

Lyapunov equation

−γD−1
o LoΣ∞ − γΣ∞LoD

−1
o + γ2D−1

o = 0

has a positive definite solution

Σ∞ =
γ

2
L−1

o ,

it is straightforward to show that the covariance matrix of
x̃ converges to Σ∞. In particular, the steady-state covariance
matrix of the relative position x̃u := xu−xo is given by k×k
diagonal block of Σ∞, which is given by γ/2 times node u’s
effective resistance Reff

u,o to Vo := {o} defined in Section II.

The above analysis of the closed loop tracking error dy-
namics shows that with the control law (4), the tracking error
covariance of an agent turns out to be equal to its effective
resistance with the leader. In (Barooah and Hespanha, 2006b),

upper and lower bounds were established for the scaling law
of effective resistance as a function of distance from the leader.
In the subsequent sections we summarize these scaling laws.
In the remaining part of this section, we discuss several well
known results for “regular” electrical networks that can be
adapted to generalized electrical networks.

A. Rayleigh’s Monotonicity Law
Rayleigh’s Monotonicity Law (Doyle and Snell, 1984) states

that if the edge-resistances in a (regular) electrical network
are increased, then the effective resistance between any two
nodes in the network can only increase. Conversely, a decrease
in edge-resistances can only lead to a decrease in effective
resistance. It turns out that Rayleigh’s Monotonicity Law can
be extended to generalized electrical networks.

For the problems considered here, it is convenient to con-
sider not only increases in edge-resistances but also removing
an edge altogether or introducing a new edge. The statement
of a version of Rayleigh’s Monotonicity Law that allow us
to consider edge removal requires the introduction of a partial
order for graphs. Given two undirected matrix-weighted graphs

G = (V,E,W), Ḡ = (V̄, Ē,W̄)

we say that G can be embedded in Ḡ, and write G ⊂ Ḡ, if
V ⊂ V̄, E ⊂ Ē, and

Wu,v ≤ W̄u,v , ∀(u, v) ∈ V.

Here and below, given two symmetric matrices A and B, we
write A ≥ B to mean that the matrix A−B is positive semi-
definite.

It was proved in (Barooah and Hespanha, 2006b) that
Rayleigh’s monotonicity law holds for generalized electrical
networks. In view of Theorem 1, this leads to the following
monotonicity result for graph effective resistances:

Theorem 2 (Rayleigh’s Generalized Monotonicity Law):
Consider two undirected matrix-weighted graphs

G = (V,E,W), Ḡ = (V̄, Ē,W̄)

such that G ⊂ Ḡ. For every single-node boundary Vo :=
{o} ∈ V and every node u ∈ V \Vo, we have that

Reff
u (Vo) ≥ R̄eff

ū (Vo),

where Reff
u (Vo) denotes u’s effective resistance to Vo with

respect to the graph G and R̄eff
ū (Vo) denotes u’s effective

resistance to Vo with respect to the graph Ḡ. �

B. Lattices, h-fuzzes, and their effective resistance
The effective resistances of several “regular” electrical net-

works have been studied in the literature on resistive electrical
network. In this section we discuss a few graphs for which
results can also be obtained for generalized electric networks.

A d-dimensional lattice, denoted by Zd is a graph that has
one vertex for every point in R

d with integer coordinates and
an edge between every two vertices corresponding to points
with an Euclidean distance between them equal to one.
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(a) 1-
dimensional
lattice Z1

(b) 2-
dimensional
lattice Z2

(c) 3-dimensional
lattice Z3

Fig. 2. Lattices

Figure 2 shows 1-, 2-, and 3-dimensional lattices. Lattices
have infinitely many nodes and edges, and are therefore
examples of infinite graphs. In practice, they serve as proxies
for very large graphs.

We now need to define the concept of a fuzz of a graph, for
which we introduce the notion of graphical distance. Given
two nodes u and v of a graph G, their graphical distance,
denoted by dG(u, v) is the minimum number of edges one
has to traverse in going from one node to the other.

Given a graph G and an integer h ≥ 1, h-fuzz of G, denoted
by G

(h), is a graph with the same set of nodes as G but with a
larger set of edges. In particular, G(h) has an edge between u
and v whenever the graphical distance between u and v is less
than or equal to h (Doyle and Snell, 1984). Figure 3 shows
the 2-fuzz of the 2-dimensional lattice.

Fig. 3. 2-fuzz of the 2-dimensional lattice.

It was shown by (Doyle, 1998) that the scalar effective
resistance in G

(h) (with all edges in both G
(h) and G having

1-Ohm resistors) will be lower than the corresponding effective
resistance in G only by a constant factor as long as h is finite,
and that constant will depend on h but not on the graphical
distance between the two nodes. The arguments in (Doyle,
1998) can be used to show that the same result holds for
generalized electrical networks, which is stated in the next
lemma (see (Barooah and Hespanha, 2006b) for details).

Lemma 3: Let G = (V,E,Wo) and G
(h) =

(V,E(h),Wo) be two matrix-weighted graphs where the
graphs G and G

(h) have bounded degree and all edges in
both the graphs have equal positive definite weight Wo. Let
Reff

u,v(G) be the effective resistance between two nodes u and
v in G and Reff

u,v(G
(h)) be the effective resistance between u

and v in the h-fuzz G
(h). The following relationship holds:

αReff
u,v(G) ≤ Reff

u,v(G
(h)) ≤ Reff

u,v(G),

where α ∈ (0, 1] is a constant independent of u and v.

The next lemma from (Barooah and Hespanha, 2005) es-
tablishes the effective resistances in d-dimensional lattices and
their fuzzes.

Lemma 4 (Lattice Generalized Effective Resistances):
Consider a generalized electrical network obtained by placing
generalized matrix resistances equal to Ro at the edges of
the h-fuzz of the d-dimensional lattice, where h is a positive
integer, d ∈ {1, 2, 3}, and Ro is a symmetric positive definite
k × k matrix. There exist constants `, αi, βi > 0 such that
the formulas in Table I hold for every pair of nodes u, v at a
graphical distance larger than `. �

The fact that in a 1-dimensional lattice the effective re-
sistance grows linearly with the distance between nodes can
be trivially deduced from the well known formula for the
effective resistance of a series of resistors (which extends to
generalized electrical networks). In two-dimensional lattices
the effective resistance only grows with the logarithm of
the graphical distance and therefore the effective resistance
grows very slowly with the distance between nodes. Far more
surprising is the fact that in three-dimensional latices the
effective resistance is actually bounded by a constant even
when the distance is arbitrarily large.

IV. SCALING OF EFFECTIVE RESISTANCE WITH DISTANCE:
DENSE AND SPARSE GRAPHS

In this section we show how to combine the Electrical Anal-
ogy Theorem 1, Rayleigh’s Generalized Monotonicity Law,
and the Lattice Effective Resistance Lemma 4 to determine
scaling laws of the effective resistance for more general classes
of graphs.

A higher density of edges and nodes in a graph should lead
to lower effective resistances. However, “naive” measures of
node and edge density turn out to be misleading predictors
for how the effective resistance scales with distance. We shall
see that to predict these scalability laws one needs instead
to determine deeper structural properties of the graph. First,
however, we will discuss a few examples that will motivate
our results.

A. Graph Drawing
In graph theory, a graph is generally treated purely as a

collection of nodes connected by edges, without any regard
to the geometry determined by the nodes’ locations. However,
for the graphs that arise in distributed control problems there
is an underlying geometry because nodes generally correspond
to physical agents and their locations often determine the
connectivity of the graph (Barooah and Hespanha, 2006a).

Graph drawings are used to capture the geometry of graphs
in Euclidean space. The drawing of a graph G = (V,E,W)
is simply a mapping of its nodes to points in some Euclidean
space, which can formally be described by a function f :
V → R

d, d ≥ 1. A drawing is also sometimes called a
representation of a graph (Godsil and Royle, 2001). For a
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TABLE I
EFFECTIVE RESISTANCE FOR LATTICES AND THEIR FUZZES

Graph Effective resistance between u and v

Z
(h)
1 α1dZ1

(u, v)Ro ≤ Reff
u,v ≤ β1dZ1

(u, v)Ro

Z
(h)
2 α2 log

(

dZ2
(u, v)

)

Ro ≤ Reff
u,v ≤ β2 log

(

dZ2
(u, v)

)

Ro

Z
(h)
3 α3Ro ≤ Reff

u,v ≤ β3Ro

particular drawing f of a graph, we can define Euclidean
distances between nodes, which are simply the distances
in Euclidean space between the drawings of the nodes. In
particular, given two nodes u, v ∈ V the Euclidean distance
between u and v induced by the drawing f : V → R

d is
defined by

df (u, v) := ‖f(v) − f(u)‖,

where ‖ · ‖ denoted the usual Euclidean norm in d-space.
Euclidean distances depend on the drawing and can be com-
pletely different from graphical distances. It is important to
emphasize that the definition of drawing does not require edges
to not intersect and therefore every graph has a drawing in
any Euclidean space. In fact, every graph has infinitely many
drawings.

For graphs that arise in distributed control problems in
which nodes correspond to physical agents, there is a natural
drawing that is obtained by associating each node to its
position in 1-, 2- or 3-dimensional Euclidean space. In reality,
all agents are situated in 3-dimensional space. However, some-
times it maybe more natural to draw them on a 2-dimensional
Euclidean space if one dimension (e.g., height) does not vary
much from node to node, or is somehow irrelevant. For natural
drawings, the Euclidean distance induced by the drawing is, in
general, a much more meaningful notion of distance than the
graphical distance. In this paper we will see that the Euclidean
distance induced by appropriate drawings provide the right
measure of distance to determine scaling laws of effective
resistance.

B. Measures of denseness/sparseness
For a particular drawing f and induced Euclidean distance

df of a graph G = (V,E,W), four parameters can be used
to characterize denseness/sparseness. Minimum node distance
denotes the minimum Euclidean distance between the drawing
of any two nodes:

s := inf
u,v∈V

v 6=u

df (u, v).

Maximum connected range denotes the Euclidean length of
the drawing of the longest edge:

r := sup
(u,v)∈E

df (u, v).

Maximum uncovered diameter denotes the diameter of the
largest open ball that can be placed in R

d with no drawing of
a node inside it:

γ := sup
{

δ : ∃Bδ such that f(u) /∈ Bδ, ∀u ∈ V

}

,

where the existential quantification spans over the balls Bδ

in R
d with diameter δ. Finally, asymptotic distance scaling

denotes the largest asymptotic ratio between the graphical and
the Euclidean distance between two nodes:

ρ := lim
n→∞

inf
{ df (u, v)

dG(u, v)
: u, v ∈ V and dG(u, v) ≥ n

}

.

Essentially ρ provides a lower bound for the ratio between the
Euclidean and the graphical distance for nodes that are very
far apart.

1) Dense graphs: The drawing of a graph for which the
maximum uncovered diameter is finite (γ < ∞) and the
asymptotic distance scaling is positive (ρ > 0) is called a
dense drawing. We say that a G is dense in R

d if there
exists a dense drawing of the graph in R

d. Intuitively, these
drawing are “dense” in the sense that the nodes can cover
R

d without leaving large holes between them and still having
sufficiently many edges so that a small Euclidean distance
between two nodes in the drawing guarantees a small graphical
distance between them. In particular, for dense drawings there
are always finite constants α, β for which

dG(u, v) ≤ α df (u, v) + β, ∀u, v ∈ V.

This fact is proved in (Barooah and Hespanha, 2006b). Using
the natural drawing of a d-dimensional lattice, one concludes
that this graph is dense in R

d. One can also show that a d-
dimensional lattice can never be dense in R

d̄ with d̄ > d.
This means, for example, that any drawing of a 2-dimensional
lattice in the 3-dimensional Euclidean space will never be
dense.

2) Sparse graphs: Graph drawings for which the minimum
node distance is positive (s > 0) and the maximum connected
range is finite (r < ∞) are called civilized drawings. This
definition is essentially a refinement of the one given in (Doyle
and Snell, 1984), with the quantities r and s made to assume
precise values. Intuitively, these drawings are “sparse” in the
sense that one can keep the edges with finite lengths, without
cramping all nodes on top of each other. We say that a graph
G is sparse in R

d if it can be drawn in a civilized manner in
d-dimensional Euclidean space.

The notions of graph “sparseness” and “denseness” are
mostly interesting for infinite graph, because every finite graph
is sparse in all Euclidean spaces R

d, ∀d ≥ 1 and no finite
graph can ever be dense in any Euclidean space R

d, ∀d ≥ 1.
This is because any drawing of a finite graph that does
not place nodes on top of each other will necessarily have
a positive minimum node distance and a finite maximum
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connected range (from which sparse follows) and it is not
possible to achieve a finite maximum uncovered diameter
with a finite number of nodes (from which lack of denseness
follows). However, in practice infinite graphs serve as proxies
for very large graphs that, from the perspective of most nodes,
“appear to extend in all directions as far as the eye can see.”
So conclusions drawn for sparse/dense infinite graphs hold for
large graphs, at least far from the graph boundaries.

3) Sparseness, denseness, and embeddings: The notions of
sparseness and denseness introduced above are useful because
they provide a complete characterization for the classes of
graphs that can embed or be embedded in lattices, for which
the Lattice Effective Resistance Lemma 4 provides the precise
scaling laws for the effective resistance.

Theorem 3 (Lattice Embedding): Let G = (V,E,W) be a
graph without multiple edges between the same pair of nodes.

1) G is sparse in R
d if and only if G can be embedded in

an h-fuzz of a d-dimensional lattice. More precisely,

G is sparse in R
d ⇔ ∃h < ∞ : G ⊂ Z

(h)
d

2) G is dense in R
d if and only if (i) the d-dimensional

lattice can be embedded in an h-fuzz of G for some
positive integer h and (ii) every node of G is at an
uniformly bounded graphical distance from another node
of G that is also a node of Zd. More precisely,

G is dense in R
d ⇔ ∃h, c < ∞ : G(h) ⊃ Zd

& ∀u ∈ V ∃ū ∈ Vlat(G) : dG(u, ū) ≤ c,

where Vlat(G) denotes the nodes of G that are mapped
to nods in Zd. �

The proof follows from simple geometric arguments, the
interested reader is referred to (Barooah and Hespanha, 2006b)
for the details.

C. Scaling laws for effective resistance
We are now finally ready to characterize scaling laws

for graph effective resistances in terms of the dense-
ness/sparseness properties of the graph. The following theorem
does precisely this by combining Theorem 1, Rayleigh’s Gen-
eralized Monotonicity Law, the Lattice Effective Resistance
Lemma 4, and the Lattice Embedding Theorem 3.

Theorem 4 (Scaling of effective resistance): Consider an
undirected matrix-weighted graph G = (V,E,W) with
matrix weights that satisfy Rmin ≤ W−1

e ≤ Rmax, ∀e ∈ E

for some symmetric positive definite matrices Rmin, Rmax.
There exist constants `, αi, βi > 0 such that the formulas in
Table II hold for every single-node boundary Vo := {o} and
every node u at an Euclidean to the boundary node o larger
than `. �

V. IMPLICATIONS FOR MAN-MADE AUTONOMOUS AGENTS

The results described in the previous section shows that for
graphs that are dense in 1, 2 and 3-dimensions, the effective
resistance between a node and the leader is upper bounded by a
linear, logarithmic and bounded function of the node’s distance
from the leader, respectively. On the other hand, if a graph

is sparse in 1, 2 and 3-dimensions, the effective resistance
between a node and the leader is lower bounded by a linear,
logarithmic and bounded function of the node’s distance,
respectively. Since tracking error covariance is exactly the
same as the graph effective resistance, if a graph is sparse
in 1-dimension, the tracking error variance increases linearly
with distance, and so agents far away from the leader will have
poor tracking error. On the other hand, if a graph is dense in
3-dimension, the tracking error variance will stay bounded by
a constant no matter the distance. Clearly a group of mobile
agents forming a 3-D dense graph can achieve accurate motion
coordination even if the group has a large number of agents.

The preceding discussion shows that the maximum tracking
errors in two networks consisting of the same number of
agents can be quite different. As a result, some networks are
more scalable than others in terms of tracking performance.
This knowledge can be used for designing networks that are
formed by groups of mobile autonomous agents, such as
UAVs. Frequently, the formation structure of such agents is
designed solely on the basis of the task that the group is ex-
pected to perform. However, our results show that a formation
structure itself imposes fundamental limitations on how well
that formation can be maintained by the agents. Thus, if the
agents are required to maintain their formation accurately, then
the desired formation itself has to be appropriately chosen. For
example, it will be unwise to ask a large group of agents to
fly in a single line while maintaining very accurate spacings
between neighbors, since we know that in such a graph the
tracking error grows linearly with the number of agents.

VI. IMPLICATIONS FOR SWARMING IN NATURE

While the exact nature of motion coordination among
biological agents is still a mystery, the control law (4) is
nevertheless an approximation of the motion coordination
schemes that are proposed to explain swarming behavior in
animals (Okubo, 1986). This control law is extremely simple
and requires only information about nearby agents, which can
be obtained by vision and/or auditory sensing mechanisms.
Moreover, measurement noise is likely to affect the relative
position estimates as modelled in (4).

The tracking error variance resulting from such an algorithm
can explain a number of puzzling observations from nature.
For example, it is well know that many varieties of birds fly
in a “V”-formation (cf. Fig. 4(a)). Although the explanation
of why this happens is still a matter of debate (both drag
reduction and better visual cue about positions have been of-
fered (Cutts and Speakman, 1994) to explain this observation),
it is observed that the birds close to the leader maintain relative
positions quite well, while the birds toward the end of the arms
of the “V” usually do not maintain well defined spacings with
their neighbors. This might be explained by the fact that a
V-formation is sparse in 1-dimension and hence the largest
tracking error grows linearly with the number of birds in the
flock. On the other extreme, schools consisting of millions of
fish are known to move together in a 3-dimensional structure
in a surprisingly agile fashion (Nottestad and Axelsen, 1999).
In a large school of fish such as the one shown in Fig. 4(b),
the network topology is 3-dimensional. It is not hard to see
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TABLE II
EFFECTIVE RESISTANCES FOR GRAPHS THAT ARE SPARSE OR DENSE. IN THE TABLE, df (u, o) DENOTES THE EUCLIDEAN DISTANCE BETWEEN NODE u

AND THE REFERENCE NODE o, FOR ANY DRAWING f THAT ESTABLISHES THE GRAPH’S SPARSENESS/DENSENESS.

Euclidean space Covariance matrix of the estimation error
of xu in a sparse graph

Covariance matrix of the estimation error
of xu in a dense graph

R α1df (u, o)Rmin ≤ Reff
u,o Reff

u,o ≤ β1df (u, o)Rmax

R
2 α2 log

(

df (u, o)
)

Rmin ≤ Reff
u,o Reff

u,o ≤ β2 log
(

df (u, o)
)

Rmax

R
3 α3Rmin ≤ Reff

u,o Reff
u,o ≤ β3Rmax

(a) A flock of birds in “V”-
formation

(b) A school of fish

Fig. 4. Examples of 1-D and 3-D network topologies in natural swarms.
Photograph in (b) courtesy Sergey Parinov (http://www.sergeyphoto.com)

that the network in such a large school will be dense in
3-D, and possibly can be approximated by a 3-dimensional
lattice. Hence the tracking error variance of each agent remains
bounded even when the number of agents (fish) making up the
school is arbitrarily large. This might explain why large fish
schools can move together and maneuver quickly even while
forming an extremely large network while a comparatively
small number of birds flying straight find it difficult to keep
a constant separation.

VII. CONCLUSION

We considered the problem of motion coordination of a
number of autonomous agents when each agent has access
only to noisy, relative position measurements with its nearby
neighbors. We showed that the covariance of the tracking error
of an agent is equal to a matrix-valued effective resistance
between the agent and the leader. Scaling laws for the effective
resistance were established for graphs that satisfy appropriate
“denseness/sparseness” properties. In graphs that are dense
in 3-D, effective resistance of a node does not grow as the
distance of a node from the leader increases, which makes
these graphs highly scalable in terms of tracking performance.
On the other hand, effective resistance grows linearly with
distance in graph that are sparse in 1-D, so that the tracking
performance is necessarily poor if the graph contains a large
number of agents.

These results clarify the fundamental performance limita-
tions that motion coordination of mobile autonomous agents

suffer from. Design of robotic swarms should take into account
these limitations in order to ensure that the design goal is
achievable. In addition, our results also shed new light on the
dynamics of animal swarms.

REFERENCES

B. Ayazifar. Graph Spectra and Modal Dynamics of Oscilla-
tory Networks. PhD thesis, Mass. Inst. of Tech., Cambridge,
MA, 2002.

P. Barooah and J. P. Hespanha. Estimation from relative
measurements: Error bounds from electrical analogy. In
Proc. of the 2nd Int. Conf. on Intelligent Sensing and
Information Processing, Jan. 2005.

P. Barooah and J. P. Hespanha. Graph effective resistances and
distributed control: Spectral properties and applications. In
45th IEEE conference on Decision and Control, December
2006a.

P. Barooah and J. P. Hespanha. Optimal estimation from
relative measurements: Electrical analogy and error bounds.
Technical report, Center for Control, Dyn.-Systems and
Comp., Univ. of California, Santa Barbara, 2006b.

F. R. K. Chung. Spectral Graph Theory. Number 92
in Regional Conference Series in Mathematics. American
Mathematical Society, Providence, R.I., 1997.

C. J. Cutts and J. R. Speakman. Energy savings in forma-
tion flight of pink-footed geese. Journal of Experimental
Biology, 189:251261, 1994.

P. G. Doyle. Application of Rayleigh’s short-cut method
to Polya’s recurrence problem. online, 1998. URL
http://math.dartmouth.edu/˜doyle/docs/
thesis/thesis/.

P. G. Doyle and J. L. Snell. Random Walks and Electric
Networks. Math. Assoc. of America, 1984.

C. Godsil and G. Royle. Algebraic Graph Theory. Graduate
Texts in Mathematics. Springer, 2001.

L. Nottestad and B. E. Axelsen. Herring schooling manoeuvres
in response to killer whale attacks. Canadian Journal of
Zoology, 77:1540–1546, 1999.

A. Okubo. Dynamical aspects of animal grouping: swarms,
schools, flocks, and herds. Advances in Biophysics, 22:1–94,
1986.

D. A. Schoenwald. AUVs: In space, air, water, and on the
ground. IEEE Control systems Magazine, pages 15–18,
December 2000.


